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ABSTRACT

The problem of electrostatic wave generation by a return current driven

by a small area electron beam during solar hard X-ray bursts is discussed.

The marginal stability method (cf. Duijveman et al. 1981) is used to solve

numerically the electron and ion heating equations for a prescribed beam

current evolution. When ion-acoustic waves are considered, we find that the

method appears satisfactory and, following an initial phase of Coulomb

resistivity in which Te/T i rises, predicts a rapid heating of substantial

plasma volumes by anomalous ohmic dissipation. This hot plasma emits so much

thermal bremsstrahlung that, contrary to previous expectations, the unstable

beam-plasma system actually emits more hard X-rays than does the beam in the

purely collisional thick target regime relevant to larger injection areas.

Inclusion of ion-cyclotron waves results in ion-acoustic wave onset at lower

Te/T i and a marginal stability treatment yields unphysical results.

Specifically, negative resistivity occurs when the ion-acoustic instability

is excited at an electron-to-ion temperature ratio of Te/T i _ 4.5, showing
the marginal stability analysis of ion acoustic waves to be invalid in this

regime. Discarding marginal stability and adopting a simple wave-energy

equation, the time-dependent effect of ion-acoustic turbulence generated by

the return current is investigated.

i Introduction

It is commonly believed that electron beams, propagating downwards in the

solar atmosphere, play a major role in the production, by collisional

bremsstrahlung, of hard X-ray bursts during the impulsive phase of solar

flares (see review by Brown and Smith 1980) and that they may also be
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instrumental in flare atmospheric heating. In addition, it is recognised

(e.g. Hoyng, Brown and van Beck 1976) that the large electron flux, demanded

by the observed X-ray photon flux in such an interpretation, requires that a

beam-neutralising return current be set up, such that:

nb vd
-- = -- (I)
n v b

n b P
where T is the ratio of beam density to ambient plasma density, v b is the

P

(sub-relativistic) beam velocity (a beam with single injection energy Eo,

representing the mean energy of a real beam, is considered here) and v d is

the drift velocity of the ambient plasma electrons (which constitut_ the

return current). If we consider, for simplicity, a model in which v d increases

during the impulsive phase, due to the rising beam flux nbVb, threshold

velocities for the generation of various microinstabilities may be reached and

so unstable wave growth may take place in the atmosphere. The resultant

anomalous resistivity will affect hard X-ray production in two ways:

(a) The electric field required to drive the return current will increase

and so reduce the lifetime of beam electrons. The nonthermal bremsstrahlung

efficiency, which is already small, is therefore further reduced.

(b) Enhanced plasma heating will take place and thereby affect the

observed thermal radiation signature.

The aim of this paper, then, is to describe preliminary results of

calculations attempting to determine the effect of such return current

instability on hard X-ray bursts during solar flares.

2 Mar$inal Stability Analysis

We consider a quasi-steady state consisting of a monoenergetic driving

electron beam, with specified current density Jb(t), current neutralising

(Jp =-Jb) hot drifting electrons at temperature Te, and hot stationary ions

at temperature Ti. While recognising the possibility of beam-return current

interaction, we concentrate here on the return current electron-background ion

instability. The quasi-linear relaxation of the electron beam is considered

elsewhere in these proceedings by McClements et al.

A typical large solar flare value is chosen for the peak total electron

injection rate, _o(S-1), but the beam area, A, is taken to be well below the

upper limit set by hard X-ray images in order to ensure that unstable return

current drift velocity thresholds are exceeded before this peak, viz.

_o = i036s-i; A = i016cm 2 (2)

(Brown and Melrose 1977, Hoyng, Knight and Spicer 1978). If we assume that

this rate (2) is obtained after a linear increase over lOs, a typical time-

scale for the impulsive phase, then our specified Jb(t) is:

Jb(t) = 5.109t statamp cm-2 (3).
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The electron beam is decelerated by the electric field that drives the

return current and ignoring electron time-of-flight effects, it has a "stopping

length", s (Brown and Hayward 1981) due to ohmic losses, given by

Eo
s =--=- (4)

en3 b

where E o is the injected electron energy, here taken to be iOOkeV and q is

the resistivity of the plasma. Finally, we also assume a homogeneous and

initially isothermal plasma with density np = iOllcm -3 and temperature

TO - 5.106 K .

The heating equations for the plasma electrons and ions, neglecting

collisional heating by the beam, and also convection, thermal conduction and

radiation losses, are

dTe 3 (Ti-Te) + _ .2 (t) (5)
3npK2 -_- =--npK2 T XiniJ p

i

dTi 3 (Te- Ti) •2 (t) (6)
3 npK =--n K + _ (I-Xi)niJ p2 p

i

where K is Boltzmann's constant, T is the ion-electron energy exchange time,

Xi _ xi(Te/Ti) and (i- Xi) are the fractions of the ohmic power dissipation

nijpL(t) absorbed by the electrons and ions respectively as a result of

collision process i, and n i is the resistivity due to this process; e.g. in

the case of classical Coulomb collisions, X = I and n is the usual Spitzer

(1962) resistivity, proportional to T_ 2.

With the onset of turbulence, anomalous resistivity sets in due to wave-

2 rises, leading toparticle collisions and so the ohmic heating term _ nij p
i

increased plasma heating. Note that this model, with a prescribed j(t), is

fundamentally different from the Duijveman et al. (1981) problem where the

electric field _(t) is specified. Specifically, their ohmic heating term,

--, is reduced by any turbulent increase in n, a fact they appear to have
• n i
1

overlooked. In other words, having a prescribed _-field leads to reduced,

rather than increased, plasma heating when anomalous resistivity sets in.

To solve equations (5) and (6) for Te(t) , Ti(t) and n(t) we use the

hypothesis of marginal stability (Manheimer and Boris 1977). States of

marginal stability (i.e. states with zero growth-rate) in the present case can

be represented by critical drift velocity (Vcrit) curves in the

(vd Te_ plane, where v e is the electron thermal speed. We apply
_v e ' Ti] =

the marginal stability hypothesis by setting v d = Vcrit at onset of turbulence,

thereby constraining the system to evolve thereafter along the marginal

stability curve. This gives us a relationship between T e and T i which, using

the forms of × for ion-cyclotron (IC) and ion-acoustic (IA) waves derived by
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Duijveman et al. (1981), then allows us to solve numerically the heating

equations (5) and (6).

We first consider the simplest case of an unmagnetised plasma, i.e.

zero B-field. Figure i shows the evolution of the plasma in the
I,

vl_ _e) plane. In the initial phase of classical resistivity, collisions
' Ti

cause an increase in Te/Ti, from its initial value of i.O, while the drift

velocity rises, until the IA marginal stability curve is reached. The system

then evolves along the curve. Figure 2 shows the variation of the normalised

resistivity with time, ion-acoustic turbulence switching on after about 6s.

Finally, the increases in T e and T i are seen in Figure 3. These profiles

relate only to a plasma layer of thickness Smin, _ 5.iO9cm (emission measure

n2As • _ 5.1047cm-3), the smallest depth of beam penetration into the
mln --

atmosphere, because it is this region which is heated continuously during the

simulation. The final temperatures obtained (T e _ 300 To, T i _ 35 To) will

tend to be reduced by losses (neglected here) but we should note that wave

generation will reduce thermal conductivity by the same factor as the electrical

conductivity.

i , l , ' i T , i _--r_*_-T --I-

10° "'iA".........

10-1

10-2

10 0
10-3

TE/T !

I I I I I I I I

101

Figure i.

stability.

Ev°luti°n °f the plasma in the _vdve _-_le)plane' assuming marginal

IA denotes the ion-acoustic marginal stability curve.
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Figure 2. Variation of resistivity, normalised to the initial classical

(i.e. Spitzer) resistivity. IA turbulence is generated at about 6s.
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Figure 3. Rise in electron and ion temperatures, normalised to the initial

temperature To = 5.10 8K, showing the increases at onset of IA turbulence.
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We now attempt to repeat the analysis for a magnetised plasma. For

Te/T i _ 8, the critical drift velocity for the generation of ion-cyclotron

waves has the lowest threshold. These preferentially heat ions and so tend

to reduce Te/T i. However they quickly saturate and do not contribute greatly

to the total resistivity. The system then evolves away from the IC marginal

stability curve, with Te/T i once again increasing due to the dominant effect

of Coulomb collisions, until the IAmarginal stability curve is reached. In

this case, onset of IA turbulence occurs at lower Te/T i and we often find

unphysical behaviour in the form of negative resistivity. Investigating

further, by assuming a simple analytic form for the IAmarginal stability

curve and by using the form of X_A = XIA(Te/Ti) derived by Duijveman et al.

(1981), we find that q is negative if Te/T i _ 4.5. In other words, the

application of marginal stability leads to negative values of anomalous

resistivity, if the onset of ion-acoustic turbulence occurs at Te/T i _ 4.5.

We discuss this failure of marginal stability further in Section 5.

3 Wave Growth Anal_sis

In the previous discussion we did not incorporate any equations describ-

ing the growth of the ion-acoustic waves, which occurs on very short timescales

in comparison to Vd/_ d , the rise time of the return current. Here we adopt

the following equation for the evolution of W, the wave energy,

dW

d-_-= vW (7)

where T, the linear growth rate, is taken to be iO-2_pi (_pi is the ion plasma

frequency). This growth rate corresponds to a drift velocity just in excess

of the marginally stable drift velocity (Stringer 1964). Provided that

W
<< I, (i.e. weak turbulence), we can relate the effective collision

n KT
p e

frequency, _eff' and the wave level using:

W

Veff _ _pe npKT e (8)

(see, e.g. Hasegawa (1974)) where _ is the electron plasma frequency. The
pe

effective (i.e. total, including classical) resistivity is then obtained

using: 4_ Uef f (9)

_eff = _p_

(see, e.g. Papadopoulos 1977).

We can, therefore, solve equations (5) and (6) numerically in conjunction

with equations (7), (8) and (9). The wave level grows from the thermal level

obtained by substituting the classical collision frequency in the left hand

side of equation (8). There are several possible saturation mechanisms limit-

332



ing the growth of ion-acoustic waves (Hasegawa 1974) and the relevant process

for solar flare conditions is by no means certain. Hasegawa gives three

possible processes, the saturation level being lowest for the nonlinear two-

wave interaction investigated by Tsytovich (1971). The effective collision

frequency at saturation for this process is

Vd (10)
Veff _ 10-2 _pi c-_

where c =
s i_ is the ion sound speed.

Our approach then, is to let classical heating proceed as vd rises until

the critical drift velocity for onset of ion-acoustic turbulence is reached.

The wave energy then grows from the thermal level in the classical regime

until saturation occurs. During the ion-acoustic heating phase, Vd/V e

decreases due to the rapid increase in Te, until the system drops below the

IA marginal stability curve (see Figure 4). The waves are then allowed to

decay, with the same e-folding time (l/y) as the wavegrowth, until the wave

level has dropped to the thermal level, where, once again, classical heating

only takes place.

Initial investigations show a rise in anomalous resistivity to _ 105 times

the initial classical value (see Figure 5), while T e and T i rise to _ 50 TO and

8T o respectively (see Figure 6). These values are obtained in a very short

time: the rise, saturation and decay of the IA waves takes place in _ lO-Ss .

Again we note that the final temperature values are attained in the beam layer

of thickness Smin, here found to be only _ 3.5.103 cm (emission measure

3.5.1041cm-3), because of the very high resistivity attained during IA

turbulence. In our simulations, it is found that saturation occurs at

W
10-3 thus satisfying the requirement for weak turbulence.

npKT e

The above analysis has, of necessity, been a very simple approach to the

problem. For example, a wave energy equation with a proper averaging over

the wavenumber, k, of the wave spectrum W(k) would be more realistic. In

addition, the controversial issue of the relevant saturation mechanism for

solar flare parameters needs to be looked at in more detail.
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Figure 4. Evolution of the plasma in the _vd-ve _) plane using the wave

growth analysis. The initial value of v d is chosen such that the IA curve

is reached after just a few numerical timesteps.
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Figure 5. The variation of normalised resistivity with time, showing the

growth, saturation and decay of IA resistivity in '_ lO-Ss .
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Figure 6. The electron and ion temperature profiles over the evolution time
of 10 -4 s.

4 The Effect of Return Current Instability on the Radiation Signature

In this section we briefly compare the thermal and non-thermal

bremsstrahlung emitted at the instant when the beam has shrunk to its

minimum length Smi n. From equation (4) it can be seen that when n rises at

onset of turbulence, the beam length is reduced by the same factor (over the

short tlme-scale involved, the current density Jb(t) is virtually constant).

In other words, the electron beam lifetime is reduced and, correspondingly,

the non-thermal bremsstrahlung. The enhanced ohmic dissipation of the return

current, however, causes rapid local heating of the plasma and hence increases

its thermal bremsstrahlung.

Below, we calculate the ratio of thermal to non-thermal radiation in the

case of beam return current losses only, which as we will show, in some

circumstances, dominate collisional losses from the beam when _ is anomalous.

For comparison, we also evaluate the ratio of the thermal bremsstrahlung in

the anomalous case to the beam bremsstrahlung evaluated from the usual thick

target formula which incorporates collisional losses only. The thermal

emissivity from the volume V = A. Smi n is

_d--_JI = Vn [_ v(E) dn dQ (e E) dE (Ii)
\oE T P Je dE de '

dn
where d--E' the number density of electrons per unit energy range, is given by
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dQ
the Maxwellian distribution function and _ (c, E) is the bremsstrahlung

cross-section differential in photon energy. Here, as a simple first approx-

imation, we assume Kramer's cross-section:

dQ (¢ E) --
d--? '

8
where Qo --'q-_r2 in the usual notation.

emissivity (Brown 1971) is

Qome c2

cE

The thick-target non-thermal

(12)

d\ac/ = _(E)9(E, E) dE (13)
NT

where J(E) = _o6(E- Eo) (s-I per unit electron energy) is the electron

flux and 9(E,E) is the number of photons of energy g emitted by an electron

with initial energy E, given by:

m*7 ¢ _o v(m,)

_(e,E) = np •] -=-_-(e,E,)dE_ dE, (14)

E,=E \_-/

In the case of beam losses due to ohmic dissipation of the return current only,

the energy loss equation is

dE,
= - e _v(m,) (15)

dt

where _, the electric field, is given by

3o (16)= en T

The ratio of thermal to non-thermal emissivities (in the case of return

current losses only) is then:

d(_)T / 8 _ e2qnpSmin
exp - (17).

Equation (13) also applies to the case of beam Coulomb collisional losses

only. The energy loss equation in this case is

dE, _ _ K npv(E,) (18)

dt E,

where K = 27e 4 A in the usual notation. The ratio of thermal bremsstrahlung

in the anomalous case to the non-thermal emissivity in the case of Coulomb

collisional losses only is then:
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T --  o(Eo-
( )cc

(19)

Applying equations (17) and (19) to the results of Section 2 (Marginal

Stability) and Section 3 (Wave Growth Analysis) we find the following:

(a) Marginal stability analysis (Figures I- 3) gives, at e = 20keV:

(20).

Here the thermal emissivity is over one order of magnitude greater than the

non-thermal (return current) emissivity, and substantially exceeds that from

a collisional thick target beam. Thus, when one considers a beam injection

rate _o and reduces the beam area, A, until the return current goes IA unstable,

the beam length and bremsstrahlung are greatly reduced as usually assumed (e.g.

Hoyng, Knight and Spicer 1978) but enhanced thermal bremsstrahlung from the

rapidly heated plasma exceeds th'-e--thicktarget bremsstrahlung which is produced

by the same beam over a large area A.

(b) Using the wave growth analysis (Figures 4- 6), when unphysical

behaviour is found in a marginal stability treatment, gives at c = 20keV:

T _ 4 ; T

(_)RC (_)CC

8.10 -7 (21)

i.e. the thermal and return current non-thermal emissivities are comparable

but the thermal emissivity is negligible in comparison with the collisional

non-thermal emissivity. This is due to the small size of the emitting volume

defined by Smi n. In comparing these results with those of (a), we should note

that the evolution time in each analysis is very different - 2Os in the

marginal stability case compared to lO-4s in the wave growth case. However,

we anticipate that over longer evolution times the wave growth analysis will

result in a greater volume of material heated to _ 108K and a greater

thermal emissivity (and emission measure).

5 The Failure of Marginal Stability

We return now to the problem of why the application of marginal stability

leads in some cases to negative values of resistivity. There appears to be

confusion in the literature as to whether or not there is a lower limit of

Te/T i below which the ion-acoustic instability cannot be excited and therefore
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below which the marginal stability curve used by us, by Duijveman et al.

(1981) and by Holman (1985) for Vcrit (IA) is irrelevant. For example, Kaplan,

Pikel'ner and Tsytovich (1974) state quite explicitly (p.53) that "... it is

necessary that Te _ 5Ti" (for the growth of ion-acoustic waves). If this is

correct, then it would be inappropriate to use our Vcrit and X- IA curves

below Te/T i _ 5, and so it would not be surprising that unphysical results

arise in this region. Similar statements are to be found in Melrose (1985)

and in Stix (1962) (p.214) where a precise lower limit of Te/T i _ 3.5 is

set. However all of these statements appear to be based on the assumption

that vd << ve. In contrast, Fried and Gould (1961) and Kadomtsev (1965)
state that _L_ ion-acoustic .__.__:1-_Li= iu=_=_ity can arise in an isothermal (i. =.

Te/T i _ I.O) plasma if the drift velocity is high enough: vd _ v e.

By examining the roots of the linearised dispersion relation describing

longitudinal plasma oscillations for drifting Maxwellians, we have ourselves
confirmed the latter case: the so-called "ion-acoustic" mode will become

unstable in an isothermal electron-ion plasma, described by drx_f'_ng

Maxwellians, if the relative drift velocity > 1.34v e. We hope to justify

this in a subsequent paper. We are, of course, still left with the problem of

explaining the failure of marginal stability for Te/T i _ 4.5. It is possible

that the form of the X-function (Tange and Ichimaru, 1974) for ion-acoustic

waves is the source of this difficulty and we intend to investigate this.

6 Discussions and Conclusions

We have presented a simple analysis of the problem of electrostatic wave

generation by a beam-driven return current. The marginal stability approach

fails below an electron-to-ion temperature ratio Te/T i _ 4.5. We believe that

this is _n°t due to any lower limit of Te/T i necessary for the generation of

unstable ion-acoustic waves: the ion-acoustic instability will arise in an

isothermal electron-ion plasma provided v d _ ve.

Both the marginal stability and wave growth analyses presented here allow

us to calculate the uniform plasma heating only in the volume bounded by Smin,

the minimum stopping length of the beam. A 2-D treatment of the combined

spatial and temporal dependence is required to extend the problem to plasma

heating outside this region. Future work should also incorporate a less

idealised injected electron spectrum (e.g. power law). However, we believe

that the essential result presented here of enhanced ohmic return current

dissipation leading to rapid plasma heating to hard X-ray temperatures in

milliseconds (i.e. typical spike burst durations) or less, will remain unaltered.
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